Im Projekt ESTABLIS-UAS geht es um die komplexen Strömungen in der atmosphärischen Grenzschicht. Um die Strömungen zu vermessen, steigt ein Drohnenschwarm auf. Die Ergebnisse können Windkraftanlagen effektiver machen.

Bild: DLR

Effizienz steigern mit Drohnen Drohnenschwarm misst Strömungsphänomene an Windanlagen

04.04.2022

Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) erforscht beim Projekt ESTABLIS-UAS die aufkommenden Stömungsphänomene von Windkraftanlagen. Das Forschungsziel ist dabei die genaue Darstellung der dreidimensionalen Strömung und Turbulenz in der untersten Schicht der Atmosphäre. Die Ergebnisse können zu einer effektiveren Anordnung von Windkraftanlagen führen.

Wind ist nicht einfach nur Wind, sondern ein kompliziertes Gebilde aus turbulenten Strukturen, die von der Umgebung beeinflusst werden. Luftwirbel entstehen durch die Landschaft, aber auch an Gebäuden, Straßen oder Windkraftanlagen.

Im Projekt ESTABLIS-UAS erforscht das Deutsche Zentrum für Luft- und Raumfahrt (DLR) genau diese Strömungsphänomene. Dazu steigt ein Drohnenschwarm auf und misst die Effekte. Mit den Ergebnissen kann zum Beispiel die Anordnung von Windkraftanlagen verbessert werden.

Leistungssteigerung von Windkraftanlagen erforderlich

„Windkraftanlagen zählen in Deutschland und weltweit zu den wichtigsten Technologien für eine nachhaltige Energieversorgung. Für den weiteren Ausbau der Windenergie ist eine deutliche Leistungssteigerung der Windkraftanlagen erforderlich. Deshalb hat der DLR-Vorstand nun beschlossen, die jährlichen Ressourcen für die Windenergieforschung ab sofort um eine Million Euro zu erhöhen“, erklärt Prof. Dr.-Ing. Anke Kaysser-Pyzalla, Vorstandsvorsitzende des DLR. „Das DLR forscht seit Jahren erfolgreich in diesem Bereich. Dabei werden viele Synergien aus der Luft- und Raumfahrtforschung genutzt. Das Spektrum reicht von der Grundlagenforschung bis zur Weiterentwicklung einzelner Komponenten gemeinsam mit der Industrie.“

„Im Hinblick auf die Energiewende spielt das Verständnis der dreidimensionalen, turbulenten Strukturen eine wichtige Rolle. So können wir die Lasten verstehen, denen Windturbinen in ihrem Lebenszyklus ausgesetzt sind, und prognostizieren, welche Leistung sie ins Energienetz einspeisen“, sagt Projektleiter Dr. Norman Wildmann von DLR-Institut für Physik der Atmosphäre.

Bis zu 100 Drohnen heben für das Projekt ESTABLIS-UAS (Exposing spatiotemporal Structures of Turbulence in the Atmospheric Boundary Layer with In-Situ measurements by a fleet of Unmanned Aerial Systems) in einer festgelegten Formation vom Boden ab. Die sogenannten „Unbemannten Flugsysteme“ (Unmanned Aerial Systems, UAS) messen Windeigenschaften, Temperatur und Luftfeuchtigkeit mit hoher Auflösung. Vorab wurden Versuche mit bis zu 20 dieser kleinen Drohnen durchgeführt. Sie sind besonders robust, damit sie auch bei größeren Windgeschwindigkeiten ihre Position halten und Ergebnisse liefern.

Versuche auch im Windkanal und im Forschungspark Windenergie

Windkraftanlagen erzeugen neben den schon vorhandenen Strömungsphänomenen zusätzlich eigene Wirbel. Ein Ziel der Windenergieforschung im DLR ist deswegen, ein Modell zu entwickeln, mit dem die Auswirkungen auf die Anlagen in der zweiten oder dritten Reihe deutlich werden. „Da gibt es noch einiges an Optimierungsbedarf. Die Antwort auf die Frage, wie sich der Wind an diesen Stellen verhält, ist sehr komplex“, erklärt Norman Wildmann. „Und sie ist nicht nur von der Anlage abhängig, sondern auch von der umgebenden Atmosphäre und den Eigenschaften des umgebenden Geländes. Es geht darum, beides zu kombinieren.“

Neben den Messungen an Windkraftanlagen sind Experimente im Windkanal der Universität Oldenburg, die DLR-Partner im Forschungsverbund Windenergie (FVWE) ist, und im DLR-Forschungspark Windenergie Krummendeich geplant. Zwei weitere Messkampagnen erfolgen im Rahmen der internationalen TeamX Initiative, die sich den komplexen Strömungen in der Grenzschicht des Gebirges widmet. Alle Experimente werden ergänzt durch numerische Simulationen. Letztlich entsteht ein umfassendes Modell für die Darstellung der turbulenten Strömung.

Modelle für die atmosphärische Grenzschicht ergänzen das Wissen aus der Fernerkundung

Die unterste Schicht der Atmosphäre – die „atmosphärische Grenzschicht“ (Atmospheric Boundary Layer, ABL) – wird direkt von der Erdoberfläche beeinflusst. Austausch- und Transportprozesse in der ABL sind hauptsächlich von Turbulenz getrieben, welche sich über eine große Skala erstreckt: Manche Wirbel sind wenige Millimeter klein, andere über einen Kilometer groß. Physikalische Modelle für die ABL, die vom Boden bis in etwa 2.000 Meter Höhe reicht, sind bislang noch nicht sehr genau: Wirbel aus zusammenhängenden Strukturen wie Böen, Hang- und Talwinden, Städten, Windturbinen oder Flugzeugen sind schwierig zu erfassen.

„Die ESTABLIS-UAS-Messungen füllen hier eine Beobachtungslücke zwischen sehr kleinen, lokalen Prozessen in Bodennähe und großskaligen Beobachtungen durch Fernerkundung, Forschungsflugzeuge und Satelliten“, sagt Prof. Markus Rapp, Leiter des Instituts für Physik der Atmosphäre in Oberpfaffenhofen. „Durch eine Kombination mit bodengebundenen Sensoren und Fernerkundung sind vollkommen neue Einblicke in die Interaktion von komplexen Strömungsphänomenen möglich.“ Die Modelle könnten dann auch erklären, wie Wirbel die Durchmischung der unteren Atmosphäre beeinflussen. Das ist zum Beispiel bei der Ausbreitung von Staub, Schadstoffen oder Aerosolen wichtig.

Das Projekt ESTABLIS-UAS läuft über fünf Jahre. Es wird im Rahmen des ERC Starting Grants vom Europäischen Forschungsrat (European Research Council, ERC) gefördert.

Bildergalerie

  • Drohnen in Startposition

    Bild: DLR

Verwandte Artikel