Die Technologien des DFKI sollen es Weltraumrobotern künftig ermöglichen, die Oberflächen von Mars, Mond und anderen Himmelskörpern autonom zu erkunden.

Bild: DFKI / Video: DFKI

Autonome Weltraumroboter Allein im All arbeiten

19.03.2019

Roboter im Weltraum sind meist passive Beobachter oder werden durch den Menschen von der Erde aus gesteuert. Schon bald aber sollen sie eigenständig und über lange Zeiträume hinweg unter den extremen Bedingungen operieren. Das DFKI entwickelt zu diesem Zweck Hard- und Software sowie Weltraumsysteme, die auf der Hannover Messe ausgestellt werden.

Sponsored Content

In künftigen Weltraummissionen werden Roboter für immer komplexere Aufgaben eingesetzt: Auf fremden Planeten sollen sie in schwer zugängliche Gebiete wie Höhlen und Krater vordringen oder Infrastruktur für zukünftige Basislager aufbauen, im Orbit Wartungs- und Reparaturarbeiten an Satelliten vornehmen oder Weltraumschrott aus der Erdumlaufbahn entfernen. Dabei ist die Fernsteuerung der Systeme von der Erde aus allein aufgrund der verzögerten Kommunikation zu weit entfernten Himmelskörpern nicht praktikabel. Aus diesem Grund müssen zukünftige Weltraumroboter zu selbstständig handelnden Akteuren werden.

Anspruchsvolle Missionen absolvieren

Das DFKI Robotics Innovation Center unter Leitung von Prof. Frank Kirchner entwickelt autonome Robotertechnologien für den Weltraumeinsatz, die mittels einer Vielzahl unterschiedlicher Sensoren ihre Umwelt umfassend wahrnehmen können. Für die Umgebungserfassung, Lokalisierung und Bewegungsplanung der Systeme setzen die Bremer Forscher zudem auf Methoden und Algorithmen der Künstlichen Intelligenz, beispielsweise maschinelle Lernverfahren. Diese ermöglichen es den Robotern nicht nur, eigenständig zu handeln und Entscheidungen zu treffen, sondern auch aus dem eigenen Verhalten zu lernen. Nur so ist ein Einsatz im Rahmen planetarer und orbitaler Missionen über längere Zeiträume und ohne Eingreifen des Menschen möglich.

Um auf fremden Planeten auch in schwieriges und wissenschaftlich interessantes Terrain vordringen zu können, entwirft das DFKI biologisch inspirierte Mobilitäts- und Morphologie-Konzepte: von vielgliedrigen Laufrobotern über hybride Systeme, die über Bein-Rad-Konstruktionen verfügen, und schreitfähigen Rovern mit aktivem Fahrwerk bis hin zu aufrecht gehenden und kletternden Systemen in menschenähnlicher Gestalt. Aufgrund ihrer Modularität und Rekonfigurierbarkeit lassen sich diese Systeme flexibel an unterschiedliche Bedingungen und Aufgabenstellungen anpassen. So sind sie in der Lage, allein, in robotischen Teams oder in Zusammenarbeit mit dem Menschen anspruchsvolle Weltraummissionen zu absolvieren.

Astronaut greift im Bedarfsfall ein

Die autonomen Roboter sollen im Bedarfsfall auch von der Erde oder dem Raumschiff aus fernsteuerbar sein. Insbesondere bei Aufgaben, die ein hohes Maß an Flexibilität erfordern, kann es notwendig sein, dass der Mensch in die Mission eingreift. Am DFKI werden dafür neuartige Teleoperationstechnologien entwickelt, die sich durch eine intuitive Bedienung auszeichnen. So kann die Fernsteuerung zum Beispiel über einen Leitstand mithilfe eines tragbaren Exoskeletts erfolgen, das Kraftrückkopplung ermöglicht. Auf diese Weise spürt der menschliche Operator, wenn das System auf ein Hindernis trifft, und hat so das Gefühl, Teil des Geschehens zu sein.

Künftig sollen Roboter und Astronauten im Weltraum auch direkt zusammenarbeiten, etwa beim Aufbau von Infrastruktur. Hierbei setzt der DFKI-Forschungsbereich auf unterschiedliche Grade der Autonomie: Je nach Komplexität der Aufgabenstellung kann der Roboter mehr oder weniger autonom agieren. Der Astronaut greift ein, wenn der Roboter nicht weiterkommt und bringt ihm neue Verhaltensweisen bei. Für eine gelingende Zusammenarbeit erforschen die Wissenschaftler zudem Verfahren der Intentionsanalyse und -erkennung, mit denen sich beispielsweise anhand physiologischer Daten die Gefühlslagen und Zustände des Menschen erfassen und in die Handlungsplanung beziehungsweise die Handlungsoptimierung des Roboters integrieren lassen.

Raus aus dem Labor: Bewährungsprobe für Weltraumroboter

Um sicherzustellen, dass die neuen Technologien unter den rauen Umgebungsbedingungen auf Mars oder Mond wie geplant funktionieren, werden diese auch außerhalb des Labors unter möglichst realistischen Bedingungen in sogenannten Analogmissionen getestet. So begaben sich Wissenschaftler des DFKI und der Universität Bremen Ende 2016 in die marsähnliche Wüste des US-Bundestaats Utah, um eine komplette Missionssequenz zu simulieren und die Fähigkeiten der Rover SherpaTT und Coyote III auf die Probe zu stellen. Ziel der Mission war es, im heterogenen Roboter-Team eine logistische Kette zu errichten, um autonom die Umgebung zu erkunden und Bodenproben zu nehmen. Für die Kontrolle der Mission nutzten die Wissenschaftler einen Leitstand in Bremen, der per Satellitenlink eine Kommunikationsverbindung zu den Robotern in Utah aufbaute. Per Exoskelett gelang es einem Operator, die Systeme aus über 8.300 km Entfernung zu steuern.

Im November 2017 führte eine zweiwöchige Feldtestkampagne DFKI-Forscher auf die Kanareninsel Teneriffa. Dort testeten sie neuentwickelte Algorithmen zur (teil-)autonomen Exploration von schwer zugänglichem Gelände, die es den Robotern CREX und Asguard IV ermöglichten, die für die Raumfahrtforschung hochinteressanten Lavahöhlen auf der Insel zu erkunden. Zuletzt – von November bis Dezember 2018 – stellten die Bremer Forscher zusammen mit europäischen Partnern für den Weltraumeinsatz entwickelte Software in der marokkanischen Wüste auf die Probe. Als robotische Testplattform diente erneut der hybride Schreit- und Fahrrover SherpaTT des DFKI, der durch die neue Software eine Strecke von über 1,4 km durch die von weiten Ebenen, aber auch steilen Hängen und Schluchten geprägten Landschaft zurücklegte.

Weltraumtechnologien auf der Erde einsetzen

Robotertechnologien für den Weltraum verfügen über ein enormes Transferpotenzial. Die auf unwegsames Gelände spezialisierten Systeme eignen sich nämlich auch für den Einsatz in extremen und lebensfeindlichen Umgebungen auf der Erde, zum Beispiel in der Tiefsee oder in kontaminierten Gebieten. Um die notwendige Autonomie und damit die Handlungsfähigkeit zu erreichen, müssen Roboter dort ganz ähnliche Anforderungen erfüllen, insbesondere hinsichtlich ihrer Mobilität, Robustheit und Lernfähigkeit.

So gelang es den Bremer Wissenschaftlern unter anderem bereits, den Roboter SherpaTT für ein Tiefsee-Szenario weiterzuentwickeln, bei dem dieser als autonomer Unterwasser-Rover zur nachhaltigen Ressourcengewinnung oder zur Überwachung und Inspektion von Tiefsee-Anlagen einsetzbar ist. Zudem statteten sie den Mikro-Rover Coyote III mit einem Gassensor aus, sodass er in einem Katastrophenszenario selbstständig und ohne Gefährdung von Menschenleben ein schwer zugängliches Gebäude erkunden und austretendes Gas aufspüren kann.

DFKI auf der Hannover Messe 2019: Halle 2, Stand C59

Bildergalerie

  • Die DFKI-Rover SherpaTT und Coyote III bei den Feldtests in der Halbwüste von Utah.

    Bild: DFKI

  • Coyote III beim Erklimmen eines felsigen Hügels in Utah.

    Bild: DFKI

  • Steuerung des Roboter-Teams in Utah via Oberkörper-Exoskelett vom Leitstand in Bremen.

    Bild: DFKI

  • Ein Operator steuert den humanoiden Roboter AILA mihilfe eines Oberkörper-Exoskeletts in einem Nachbau der ISS.

    Bild: DFKI

  • Der Sternrad-Rover Asguard IV navigiert autonom durch eine Lavahöhle auf Teneriffa.

    Bild: DFKI

  • Der sechsbeinige Laufroboter CREX erkundet eigenständig eine Lavahöhle auf Teneriffa.

    Bild: DFKI

  • Um Meere und Ozeane auf fremden Himmelskörpern erkunden zu können, entwickelt das Robotics Innovation Center auch autonome Unterwasserfahrzeuge (AUVs) für den Weltraumeinsatz.

    Bild: DFKI

  • Der DFKI-Rover SherpaTT durchquerte autonom die marrokanische Wüste und legte dabei eine Strecke von über 1,3 km zurück.

    Bild: DFKI

  • Experimente in der Wüste: Die Forscher testeten mithilfe des DFKI-Rovers die in den EU-Projekten entwickelten Technologien.

    Bild: DFKI

Verwandte Artikel