Aktuelle Experimente und Simulationen zeigen, wie sich zerstörerische Plasma-Instabilitäten in Fusionsreaktoren wie ITER vermeiden lassen.

Bild: iStock, piranka

„Plasma-Schmelze“ verhindern Neue Lösung macht Kernfusion sicherer

11.10.2022

Kernfusionskraftwerke könnten unsere Energieprobleme lösen. Doch sie sind auch nicht ohne Tücken: Plasma-Instabilitäten können die Wände von Fusionsanlagen zum Schmelzen bringen. Ein Team um Forschende des Max-Planck-Instituts für Plasmaphysik (IPP) und der Technischen Universität Wien fand jetzt einen Weg, diese gefährlichen Instabilitäten in den Griff zu bekommen und Kernfusion sicherer zu gestalten.

Kernfusionskraftwerke könnten unsere Energieprobleme eines Tages nachhaltig lösen. Deshalb wird weltweit an dieser Methode der Energiegewinnung geforscht, die Prozesse auf der Sonne nachahmt. Damit das Prinzip auch auf der Erde funktioniert, müssen Plasmen in Reaktoren auf mindestens 100 Millionen °C erhitzt werden. Magnetfelder schließen das Plasma ein, sodass die Wand des Reaktors nicht schmilzt. Das funktioniert nur, weil die äußersten Zentimeter im magnetisch geformten Plasmarand extrem gut isolieren. In diesem Bereich kommt es aber immer wieder zu sogenannten Plasma-Instabilitäten. Dabei werden kurzzeitig energiereiche Teilchen an die Reaktorwand geschossen, die dadurch beschädigt werden kann.

Nun konnten Forschende vom Max-Planck-Institut für Plasmaphysik (IPP) in Garching und von der TU Wien zeigen: Es gibt einen Betriebsmodus für Fusionsreaktoren, der dieses Problem vermeidet. Statt großer, potenziell zerstörerischer Instabilitäten, so genannte Edge Localised Modes (ELM) vom Typ I, nimmt man ganz bewusst viele kleine Instabilitäten in Kauf, die für den Reaktor kein Problem darstellen.

„Unsere Arbeiten stellen einen Durchbruch im Verständnis des Auftretens und der Verhinderung von großen Typ-I ELMs dar“, sagt Elisabeth Wolfrum, Forschungsgruppenleiterin am IPP in Garching und Professorin an der TU Wien. „Die von uns vorgeschlagene Betriebsart ist wohl das vielversprechendste Szenario für Plasmen in künftigen Fusionskraftwerken.“ Die Ergebnisse wurden im renommierten Fachjournal „Physical Review Letters“ als Editors‘ Suggestion publiziert.

Die Renaissance einer verworfenen Betriebsart

In einem torusförmigen Tokamak-Fusionsreaktor bewegen sich die ultraheißen Plasmateilchen mit hoher Geschwindigkeit. Mächtige Magnetspulen sorgen dafür, dass die Teilchen eingesperrt bleiben anstatt mit zerstörerischer Wucht auf die Wand des Reaktors zu treffen. „Perfekt von der Reaktorwand isolieren möchte man das Plasma aber auch nicht, schließlich muss neuer Brennstoff zugeführt und das bei der Fusion entstandene Helium abtransportiert werden“, erklärt Friedrich Aumayr, Professor für Ionen- & Plasmaphysik am Institut für Angewandte Physik der TU Wien.

Die Details der Dynamik im Inneren des Reaktors sind kompliziert: Die Bewegung der Teilchen hängt von Plasmadichte, Temperatur und Magnetfeld ab. Je nachdem, wie man diese Parameter wählt, sind unterschiedliche Betriebsarten möglich. Eine jahrelange Zusammenarbeit des IPP und der TU Wien mündete nun in einen Betriebsmodus, der die besonders zerstörerischen Plasmainstabilitäten vom Typ-I ELM verhindern kann.

Schon vor einigen Jahren zeigten die Experimente ein Rezept gegen die gefürchteten Typ-I ELMs: Das Plasma wird durch die Magnetspulen leicht verformt, sodass sein Plasmaquerschnitt nicht mehr elliptisch ist, sondern einem abgerundeten Dreieck ähnelt. Gleichzeitig erhöht man speziell am Rand die Dichte des Plasmas. „Zunächst dachte man aber, das sei ein Szenario, das nur in den momentan laufenden kleineren Maschinen wie ASDEX Upgrade am IPP in Garching auftritt und für einen Reaktor irrelevant ist“, erklärt Lidija Radovanovic, die derzeit an der TU Wien an ihrer Dissertation zu diesem Thema arbeitet. „Mit neuen Experimenten und Simulationen konnten wir aber nun zeigen: Die Betriebsart kann auch in für Reaktoren vorgesehenen Parameterbereichen die gefährlichen Instabilitäten verhindern.“

Wie ein Topf mit Deckel

Durch die dreieckige Form des Plasmas und das gezielte Einblasen zusätzlicher Teilchen am Rand treten viele kleine Instabilitäten auf – und zwar mehrere tausend Mal pro Sekunde. „Diese kleinen Teilchen-Bursts treffen die Wand des Reaktors schneller, als die sich aufheizen und wieder abkühlen kann“, erklärt Georg Harrer, Erstautor der Publikation, der zur weiteren Untersuchung des neuen Betriebsmodus einen zweijährigen EUROfusion Researcher Grant von der EU erhalten hat. „Daher spielen diese einzelnen Instabilitäten für die Reaktorwand keine große Rolle.“ Wie das Team durch detaillierte Simulationsrechnungen zeigen konnte, verhindern diese Mini-Instabilitäten aber die großen Instabilitäten, die sonst Schaden anrichten würden.

„Es ist ein bisschen wie bei einem Kochtopf mit Deckel, in dem das Wasser zu kochen beginnt“, erklärt Georg Harrer. „Wenn sich immer wieder Druck aufbaut, den Deckel hebt und der Dampf entweicht, dann wird der Deckel heftig klappern. Wenn man hingegen den Deckel leicht schräg stellt, dann kann kontinuierlich Dampf entkommen, aber der Deckel bleibt stabil und klappert nicht.“

Diese Fusionsreaktor-Betriebsart lässt sich in unterschiedlichen Reaktoren realisieren – nicht nur am ASDEX-Upgrade-Reaktor am IPP in Garching, sondern auch am derzeit in Bau befindlichen ITER in Frankreich oder auch in künftigen Fusionskraftanlagen wie DEMO.

Bildergalerie

  • Von links nach rechts: Georg Harrer (TU Wien), Lidija Radovanovic (TU Wien), Elisabeth Wolfrum (IPP Garching), Friedrich Aumayr (TU Wien) mit einem 3D-gedruckten 1:100 Modell des ITER

    Von links nach rechts: Georg Harrer (TU Wien), Lidija Radovanovic (TU Wien), Elisabeth Wolfrum (IPP Garching), Friedrich Aumayr (TU Wien) mit einem 3D-gedruckten 1:100 Modell des ITER

    Bild: David Rath, TU Wien

Verwandte Artikel