Die optische Beobachtungsstation des DLR nit ihrerm neuartigen Teleskop ermöglicht völlig neue Experimente.

Bild: DLR

Neue optische Bodenstation Optische Vernetzung für Satelliten hält Kommunikationsnetze aktuell

22.11.2022

Laserkommunikation wird zukünftig ein unverzichtbares Instrument für eine schnelle und sichere Datenverbindung per Satellit sein. Die vielfältigen Möglichkeiten der optischen Freiraumkommunikation können nun mit einer neu ausgebauten Bodenstation am DLR-Standort Oberpfaffenhofen getestet und weiterentwickelt werden. Diese Technologie ermöglicht Datenraten im Terrabit-Bereich, die Nutzung von Quantenverschlüsselungstechnologien sowie hochpräzise Satellitennavigationssysteme.

Satelliten werden zusehends zu Netzwerkknoten des Internets. Während terrestrische Knoten über Glasfasernetze eingebunden sind, können Satelliten mit aktuellen Entwicklungen nur dann mithalten, wenn sie ebenfalls optisch vernetzt werden. Programme der europäischen Kommission wie die Secure Connectivity Initiative stützen sich ebenso auf diese Technologie wie eine Vielzahl kommerzieller Netzwerke wie Starlink oder Oneweb, die mit ihren nächsten Generationen ähnliche Entwicklungen anstreben.

Teststation für das „Internet der Zukunft“

Im Zentrum der Überlegungen stehen optische Satellitenlinks, wie sie am Institut für Kommunikation und Navigation des Deutschen Zentrums für Luft- und Raumfahrt (DLR) seit mehr als 20 Jahren konzipiert, entwickelt und getestet werden. Optische Verbindungen werden zudem nicht nur für Kommunikationsnetzwerke in Betracht gezogen, sondern auch für die Quantenverschlüsselung. Diese soll das sichere Internet der Zukunft ermöglichen und die nächste Generation von Satellitennavigationssystemen. Das DLR betreibt seit vielen Jahren experimentelle Bodenstationen, um diese Technologien voranzutreiben. Im Oktober 2022 wurde dafür eine neue leistungsstärkere Bodenstation am DLR-Standort Oberpfaffenhofen eingeweiht.

„Zukünftig wird es immer wichtiger, Satelliten effizient miteinander zu vernetzen sowie den Datenaustausch zum Boden sicher und leistungsstark zu gestalten im Angesicht der immer größeren Datenmengen bei Kommunikation, Navigation und Erdbeobachtung ebenso wie vor dem Hintergrund knapper werdender Funklizenzen“, sagt die DLR-Vorstandsvorsitzende Prof. Dr.-Ing. Anke Kaysser-Pyzalla. „Die optische Freiraumkommunikation bietet hier eine vielversprechende Perspektive, deren vielfältige Möglichkeiten wir mit der neu ausgebauten Bodenstation in Oberpfaffenhofen austesten und weiterentwickeln werden. Insbesondere bei der Absicherung des Austauschs sensibler Daten etwa bei kritischen Infrastrukturen im All und auf der Erde können uns Lösungen der satellitenbasierten Quantenkommunikation entscheiden voranbringen.“

Das Kernstück der neuen optischen Bodenstation ist ein neues Teleskop mit 80 cm Durchmesser in einer sogenannten Coudé-Anordnung, bei der das Licht des Teleskops über Spiegel direkt in ein Labor darunter geführt wird. Dies ermöglicht völlig neue Experimente, die in dieser Form bislang nicht durchgeführt werden konnten.

Datenübertragung mit Terabit-Geschwindigkeit

Optische Verbindungen zwischen Satelliten und den Empfangsstationen am Boden, wie sie bei der Anbindung von Kommunikationssatelliten an das Internet oder bei der Datenübertragung von Erdbeobachtungsatelliten an deren Daten-Prozessierungszentren eingesetzt werden, sind mit dem nötigen Weg durch die Atmosphäre eine besondere Herausforderung. Temperaturschwankungen in der Atmosphäre führen zu einer Verzerrung der optischen Satellitensignale, die Übertragungsfehler bewirken können.

Die neue Bodenstation erlaubt es diese Phänomene genauer als bisher zu untersuchen, um Verfahren für eine fehlerfreie Übertragung auch unter schwierigen Bedingungen zu erreichen. So zielen die Arbeiten des DLR-Instituts für Kommunikation und Navigation sowohl darauf ab, Signale am Boden bestmöglich empfangen zu können, als auch die Sendesignale der Bodenstation so „vorzuverzerren“, dass sie den Satelliten im All möglichst ungestört erreichen. In bodennahen Versuchen konnte das Institut bereits 2016 eine Übertragungsrate von 1,72 Terabit pro Sekunde erreichen und 2017 eine Übertragungsrate von 13.2 Terabit pro Sekunde realisieren. Diese Datenrate würde ausreichen, um ganz Westeuropa mit einer schnellen Internetanbindung zu versorgen. Mit der neuen Bodenstation sollen solche Versuche nun auch mit Satelliten durchgeführt werden.

Quantenschlüssel aus dem All

Eine genaue Entzerrung des Satellitensignals ist zudem eine Grundvoraussetzung, um Quantenschlüssel aus dem All möglichst effizient verteilen zu können. Das DLR-Institut für Kommunikation und Navigation hat dazu erfolgreiche Vorarbeiten geleistet und bereits im Jahr 2013 zusammen mit der Ludwig-Maximilians-Universität München (LMU) erfolgreiche Übertragungsversuche von einem Flugzeug zum Boden durchgeführt.

Quantenschlüssel sollen künftig genutzt werden, um die verschlüsselte terrestrische Übertragung so abzusichern, dass sie Angriffen durch Quantencomputer standhalten. „Eine beweisbar sichere Absicherung der Kommunikation ist insbesondere für Nutzer wie Regierungsstellen, Behörden, Banken, Versicherungs- und Industriegesellschaften von immenser Bedeutung", sagt Dr. Susann Groß, Leiterin der DLR-Programmdirektion für Raumfahrtforschung und -technologie.

Präzisere Navigation mit optischen Satellitenlinks

Satellitennavigationssysteme wie das europäische Galileo und das amerikanische GPS sind bereits heute als unabdingbare Infrastrukturen im alltäglichen Leben und Wirtschaften verankert. Sie senden präzise Zeitsignale aus. Wenn der Empfänger diese Information von mindestens vier Satelliten empfängt, die Uhren korrekt synchronisiert und die Satellitenbahnen genau bekannt sind, kann der Empfänger daraus seine exakte Position ermitteln.

Um die Zeitsignale der Satelliten zu synchronisieren und die Satellitenbahnen zu bestimmen, muss heute ein komplexer Prozess auf der Basis von Messungen einer Vielzahl von Sensorstationen am Boden ablaufen. Am DLR wurde mit Kepler ein neuer Ansatz entwickelt, bei dem optische Verbindungen zwischen Navigationssatelliten eingesetzt werden. Diese optischen Verbindungen werden genutzt, um die Satelliten direkt zu synchronisieren und um die Bahnen mit nur zwei Bodenstationen exakt zu bestimmen. Dies führt nicht nur zu einer deutlichen Vereinfachung des Systems, sondern auch zu einer erheblich verbesserten Genauigkei

„Der Kepler-Ansatz hat das Potenzial diezukünftige Automatisierung im Verkehr durch hochpräzise Ortsdaten deutlich zu erleichtern“, sagt Dr. Pagels-Kerp, DLR-Bereichsvorständin Raumfahrt. Zudem wäre das System kaum mehr anfällig für Störungen, die heute etwa in Kriegs- und Krisengebieten willentlich herbeigeführt werden. In diesem Kontext wird die neue Bodenstation wertvolle Beiträge für die Validierung der DLR-Konzepte liefern.

Technologietransfer

Das DLR-Institut für Kommunikation und Navigation ist eine der weltweit führenden Forschungseinrichtungen für die Entwicklung optischer Freiraumverbindungen. Im Umfeld des Instituts haben sich Firmen wie Tesat Spacecom in Backnang und die Ausgründung Mynaric zu den bedeutendsten Firmen in diesem Sektor entwickelt. Die neue Bodenstation wird dabei helfen, diese starke deutsche Positionierung zu erhalten und weiterzuentwickeln.

Bildergalerie

  • Infografik zur Beobachtungsstation

    Bild: DLR

Verwandte Artikel