Durch die Kombination eines laser-getriebenen und eines Elektronenstrahl-getriebenen Plasmabeschleunigers wird eine höhere Stabilität und Teilchendichte erreicht, als mit einer einzelnen, laser-getriebenen Beschleunigerstufe möglich ist.

Bild: iStock, -Dant-

Teilchenbeschleuniger kombiniert Mehr Kontrolle über Plasmabeschleuniger

01.12.2022

Physiker am Centre for Advanced Laser Applications der LMU haben zwei Methoden der Teilchenbeschleunigung für Elektronenstrahlen kombiniert, um mehr Stabilität und eine höhere Teilchendichte zu erreichen.

Wenn ein Teilchenbeschleuniger alleine nicht ausreicht, um zum gewünschten Ergebnis zu gelangen, warum nicht zwei Beschleuniger kombinieren? Ein internationales Team unter Leitung von Physikern am Centre for Advanced Laser Applications (CALA) der LMU hat genau diese Idee umgesetzt. Das Team kombinierte zwei plasma-basierte Beschleunigungsmethoden für Elektronen, und zwar einen Laser-getriebenen Wakefield-Beschleuniger (LWFA) mit einem Teilchenstrahl-getriebenen Wakefield-Beschleuniger (PWFA). So erreichten sie für Elektronenstrahlen eine bessere Stabilität und eine höhere Teilchendichte als mit nur einem einzelnen Plasmabeschleuniger. Die innovative Methode eröffnet der plasma-basierten Teilchenbeschleunigung neue Perspektiven.

Wakefield-Beschleunigung

Plasma-basierte Wakefield-Beschleunigung gilt als aussichtsreicher Kandidat für die nächste Generation von Teilchenbeschleunigern. In einer solchen Maschine bewegt sich ein intensiver Treiber durch ein Teilchengemisch aus Ionen und freien Elektronen, einem sogenannten Plasma. Der Treiber, entweder ein intensiver Laserpuls oder ein kurzer, sehr intensiver Puls von hochenergetischen Teilchen, verdrängt die Plasmaelektronen, die sich in seinem Weg befinden.

Ähnlich wie bei einem Boot auf einem See fließt die verdrängte Materie hinter dem Treiber zurück in ihre Ausgangsposition. Auf der so entstehenden Kielwelle hinter dem Treiber können wiederum Elektronen surfen und innerhalb weniger Millimeter Energien im Gigaelektonenvolt-Bereich erlangen. Aufgrund der enorm großen Beschleunigungsfelder sind diese Plasmabeschleuniger allerdings äußerst schwer zu zähmen.

Die CALA-Laserphysiker um Moritz Förster und Prof. Stefan Karsch haben nun experimentell gezeigt, dass durch die Kombination eines lasergetriebenen und eines Elektronenstrahl-getriebenen Plasmabeschleunigers eine höhere Stabilität und Teilchendichte erreicht wird, als dies mit einer einzelnen, lasergetriebenen Beschleunigerstufe möglich ist. Bei diesem hybriden Ansatz werden in einem ersten lasergetriebenen Wakefield-Beschleuniger Elektronenpakete mit einem hohen Spitzenstrom erzeugt. Diese Elektronen dienen als Treiber für den nachfolgenden teilchengetriebenen Wakefield-Beschleuniger, in dem wiederum Elektronen beschleunigt werden.

Brillante Röntgenstrahlung erzeugen

Die Stabilität des neu erzeugten Elektronenpakets ist deutlich höher, da die zweite Beschleunigerstufe weit weniger sensibel auf unvermeidbare Fluktuationen des Treibers reagiert. Der hybride Ansatz kombiniert somit die Vorteile der beiden komplementären Treiberarten für plasmabasierte Beschleuniger.

Stabilität und hohe Ladungsdichte der erzeugten Elektronenpakete sind grundlegende Voraussetzungen für die Erzeugung brillanter Röntgenstrahlung über verschiedene Mechanismen. Einerseits sind die schmalbandigen, wenig divergenten Elektronenpakete ideal geeignet für die Erzeugung harter Röntgenstrahlung durch Thomson-Rückstreuung, die für die medizinische Bildgebung genutzt werden kann.

Andererseits sollte die hohe Strahlqualität anspruchsvolle neuartige Anwendungen wie plasmabasierte Freie-Elektronen-Laser (FEL) ermöglichen. Solche FEL-Strahlung ließe sich künftig für die Untersuchung ultraschneller Phänomene in Festkörpern mit räumlich und zeitlich atomarer Auflösung verwenden.

Firmen zu diesem Artikel
Verwandte Artikel