Illustration: Am IST Austria ist ein Prototyp einer Schnittstelle entwickelt worden, die in Zukunft Quantencomputer miteinander verbinden könnte.

Bild: Philip Krantz, IST Austria

Schnittstellenprototyp entwickelt Informationsaustausch zwischen Quantencomputern ermöglichen

28.06.2019

Verschränkung ist eines der Grundprinzipien in der Quantenmechanik. Physikern am Institute of Science and Technology Austria (IST Austria) ist es nun gelungen, mit einem mechanischen Oszillator verschränkte Strahlung zu erzeugen. Ihre Methode könnte sich als äußerst nützlich erweisen, um Quantencomputer miteinander zu verbinden.

[]

Verschränkung ist ein typisches Phänomen der Quantenwelt, kommt jedoch in der sogenannten klassischen Welt, die wir aus unserem täglichen Leben gewohnt sind, nicht vor. Sind zwei Teilchen verschränkt, kann man die Eigenschaften des einen durch Beobachten des anderen ermitteln.

Das Phänomen, das bereits von Einstein entdeckt wurde, wird derzeit in der Quantenkryptographie verwendet, um Verschlüsselung sicherer zu machen und lässt sich nicht nur auf Teilchen, sondern auch auf Mikrowellenstrahlung anwenden. An dieser Strahlung arbeitet Shabir Barzanjeh, ein Postdoc in der Gruppe von Professor Fink am IST Austria und Erstautor der nun publizierten Studie.

Zum ersten Mal mechanisches Objekt verwendet

„Stellen Sie sich eine Box mit zwei Ausgängen vor. Sind die Ausgänge verschränkt, kann man die Strahlung, die aus dem einem austritt, durch Beobachten des anderen charakterisieren“, erklärt Barzanjeh. Verschränkte Strahlung konnte bereits zuvor erzeugt werden, aber in dieser Studie verwendeten die Forscher zum ersten Mal ein mechanisches Objekt. Mit einer Länge von 30 μm und einer Gesamtzahl von etwa einer Billion Atomen mag der von der Gruppe erzeugte Siliziumbalken in unseren Augen klein erscheinen, für die Quantenwelt ist er jedoch riesig.

„Für mich war dieses Experiment auf einer sehr grundlegenden Ebene interessant“, sagt Barzanjeh. „Die Frage, die wir uns gestellt haben, war: Kann man mit einem so großen System verschränkte Strahlung erzeugen? Jetzt wissen wir, die Antwort lautet: Ja.“

Informationen überleben keine heißen Umgebungen

Das Gerät hat aber auch praktischen Wert. Mechanische Oszillatoren könnten als Schnittstelle zwischen den äußerst empfindlichen, kalten Quantencomputern und den Signalen in optischen Fasern dienen, die diese innerhalb und außerhalb von Rechenzentren verbinden sollen. „Was wir gebaut haben, ist ein Prototyp für eine Quantenschnittstelle“, sagt Barzanjeh.

In supraleitenden Quantencomputern funktioniert die Elektronik nur bei extrem niedrigen Temperaturen von wenigen tausendstel Grad über dem absoluten Nullpunkt von -273,15 °C. Denn Quantencomputer arbeiten auf der Basis von Mikrowellenphotonen, die extrem empfindlich gegenüber Rauschen und Verlusten sind. Steigt die Temperatur im Computer, werden alle Informationen zerstört.

Aus diesem Grund ist es derzeit fast unmöglich, Informationen von einem Quantencomputer auf einen anderen zu übertragen. Die Information müsste nämlich eine heiße Umgebung durchqueren, die sie nicht „überlebt“.

Ein Schritt hin zum Quanteninternet

Klassische Computer in Netzwerken werden dagegen meist über optische Glasfaserleitungen verbunden, da optische Strahlung sehr robust gegen Störungen ist. Um diese erfolgreiche Technologie auch für Quantencomputer nutzen zu können, müsste eine Verbindung geschaffen werden, die die Mikrowellenphotonen des Quantencomputers in optische Informationsträger umwandeln kann – oder ein Gerät, das verschränkte Mikrowellen und optische Felder als Grundlage für eine Quantenteleportation erzeugt.

Eine solche Verbindung würde als Brücke zwischen dem optischen System auf Raumtemperatur und der eiskalten Quantenwelt dienen. Das von den Physikern entwickelte Gerät ist ein Schritt in diese Richtung. „Der Oszillator, den wir gebaut haben, hat uns einem Quanteninternet einen Schritt näher gebracht", freut sich Erstautor Barzanjeh.

Anwendung bei schwer untersuchbaren Systemen

Dies ist jedoch nicht die einzig mögliche Anwendung des Geräts. „Unser System könnte auch eingesetzt werden, um die Leistung von Gravitationswellendetektoren zu verbessern", erklärt Barzanjeh. Johannes Fink fügt hinzu: „Es hat sich herausgestellt, dass die Beobachtung solcher stationär verschränkten Felder impliziert, dass der mechanische Oszillator, der sie erzeugt, ein Quantenobjekt sein muss. Dies gilt für jede Art von Mediator, wobei er dabei nicht direkt gemessen werden muss.“

Das Messprinzip könnte daher in Zukunft dazu beitragen, „die potenzielle Quantennatur anderer schwer untersuchbarer Systeme, wie die lebender Organismen oder des Gravitationsfelds, zu verifizieren beziehungsweise zu falsifizieren“, erklärt Fink.

Firmen zu diesem Artikel
Verwandte Artikel