Aktuelle Nachrichten aus der Industrie wöchentlich von der Redaktion für Sie kostenfrei zusammengestellt.
Sie haben sich bereits unter der angegebenen E-Mail Adresse registriert.
Bei der Registrierung ist ein Fehler aufgetreten.
Sie müssen die AGBs bestätigen.
Registrierung erfolgreich.

Großglächig und flexibel sollen LED künftig eingesetzt werden. Forscher der Universität Bremen sind diesem Ziel einen Schritt näher gekommen.

Bild: Pixabay

Biegsame Displays und LED-Tapete Teilchen Tanzen für die LED-Forschung

13.02.2018

Physiker der Universität Bremen haben einen wichtigen Beitrag zum Verständnis neuartiger atomar dünner Materialien für effiziente biegsame Displays auf gekrümmten Oberflächen geleistet.

Sponsored Content

Die Größe und farbliche Brillanz von Displays nehmen ständig zu. Bei der Weiterentwicklung der Glühbirne ist es einfach: Sie wird immer mehr durch LED ersetzt, in denen sogenannte Halbleiter das Licht erzeugen. Die Einsatzmöglichkeiten von Displays sind jedoch beschränkt, da herkömmliche Halbleitermaterialien eher unflexibel und starr sind. Mit organischen Leuchtdioden (OLED) lassen sich zwar biegsame Displays herstellen, jedoch sind Lebensdauer und Lichtausbeute niedriger als bei ihren anorganischen Verwandten.

Neue Materialien sind extrem dünn, leuchten intensiv und lassen sich zugleich erstaunlich einfach herstellen: Mit herkömmlichem Klebeband kann man im Labor einzelne atomare Lagen von speziellen Kristallen abziehen. Besonders geeignet sind hierfür die sogenannten Van-der-Waals-Kristalle. Eine zentrale Idee ist das Prinzip des „Lego-Baukastens“: Man kombiniert die Funktionalitäten leuchtender und elektrisch leitender atomar dünner Materialien miteinander, indem man sie direkt aufeinanderstapelt.

Neuartiges Material für Sensoren und Solarzellen

Die auf diese Weise erzeugten Materialien weisen eine enorme mechanische Stabilität auf. Sie leuchten nicht nur sehr gut, sie absorbieren auch Licht und können es in Strom umwandeln. Deshalb gibt es bereits erste Anwendungen in sehr empfindlichen Sensoren, denkbar ist auch ihre Verwendung in biegsamen Solarpanels. Diese Eigenschaft ist im Hinblick auf den wachsenden Bedarf an erneuerbaren Energiequellen besonders interessant.

Licht in einem bestimmten Bereich des Farbspektrums wird in Halbleitern durch das Zerstrahlen positiver und negativer elektrischer Ladungen erzeugt. Wegen ihrer unterschiedlichen Polaritäten ziehen sich die entgegengesetzten Ladungen an und können sich zu neuen Verbundteilchen, sogenannten Exzitonen, mit veränderten Eigenschaften zusammenschließen.

Das Physikerteam der Universität Bremen hat im Rahmen der Grundlagenforschung zu den neuen Materialien eine Methode entwickelt, mit der diese Verbundteilchen sichtbar gemacht und studiert werden können. Die Wissenschaftler haben analysiert, wie dieses Auftreten der Verbundteilchen von der Anzahl der Ladungen abhängt, die man bei einer Leuchtdiode von außen steuern kann.

Tanzendes Spiel der Teilchen erforscht

Nachwuchswissenschaftler Dr. Alexander Steinhoff erläutert die Forschungsergebnisse: „Die ungleichen Ladungen zeigen hierbei ein Verhalten ganz ähnlich dem von Tänzern auf einer unterschiedlich bevölkerten Tanzfläche. Ist die Dichte gering, befinden sich also sehr wenige Tänzer auf der Fläche, so finden sich keine Partner und jeder tanzt für sich allein. Auf einer gut gefüllten Tanzfläche hingegen finden sich Paare zusammen und tanzen ungestört jedes für sich. Eine übervolle Tanzfläche schließlich führt zu ständigen Kollisionen der Paare, so dass diese sich trennen und jeder wieder allein tanzt.“

Die Forscher konnten zeigen, dass die Verbundteilchen mittels der sogenannten Photoelektronenspektroskopie sichtbar gemacht werden können. Hierbei wird ein hochenergetisches Lichtteilchen eingestrahlt. Das zusammengesetzte Teilchen wird zerschlagen und seine Bestandteile aus dem Halbleiter herausgelöst und detektiert, um auf die Struktur des Verbundteilchens zu schließen.

Neue Methode bringt Struktur in den Tanz

Die Autoren regen in einem im Nature-Magazin veröffentlichten Artikel an, diese Erkenntnisse zu nutzen. Das Verhältnis zwischen freien und gepaarten Ladungen beeinflusst direkt die optischen und elektronischen Eigenschaften des Materials. Es kann durch gezielte Strukturierung der Umgebung gesteuert werden, auf die atomar dünne Materialien sehr sensitiv reagieren. Die Wissenschaftler leisten hiermit einen wichtigen Beitrag für die Handhabung des „Lego-Baukastens“ und die Herstellung von ultradünnen optoelektronischen Bauteilen mit maßgeschneiderten Eigenschaften.

Bildergalerie

  • Mitglieder der Arbeitsgruppe von Prof. Frank Jahnke und Dr. Christopher Gies am Institut für Theoretische Physik der Universität Bremen, die an der Entwicklung neuartiger atomar dünner Halbleiter arbeiten

    Bild: Universität Bremen

  • Grafische Darstellung eines Stapels aus drei atomar dünnen Kristallen

    Bild: Universität Bremen

Firmen zu diesem Artikel
Verwandte Artikel