Sobald Quantencomputer der Standard werden, müssen auch sichere Quantennetze vorhanden sein damit Daten weiterhin geschützt bleiben.

Bild: iStock; Saranya Yuenyong

Testfeld in Berlin Abhörsicheres Quantennetzwerk

25.01.2023

Gefördert durch das BMBF mit 2,4 Millionen Euro wird im Verbundprojekt „tubLAN Q.0“ ein abhörsicheres Quantennetzwerk im Herzen Berlins entstehen. Ausgangspunkt dafür ist die TU Berlin. Hier sollen für einen ersten Test des Verfahrens vom Eugene-Paul-Wigner-Gebäude aus zwei verschiedene Verbindungen auf dem Campus Charlottenburg eingerichtet werden.

Es wäre der Supergau für den Datenschutz: Wenn in der Zukunft leistungsfähige Quantencomputer zur Verfügung stehen, könnten diese unsere heutigen Verschlüsselungsverfahren ohne Aufwand knacken. Forschende arbeiten deshalb weltweit mit Hochdruck an der sogenannten Quantenkryptografie. Ihr Prinzip beruht auf einzelnen Lichtteilchen (Photonen), die eigentlich kleine Pakete von Lichtwellen darstellen. Mit ihnen lassen sich digitale Codes aus Nullen und Einsen übertragen, mit denen Nachrichten absolut sicher verschlüsselt werden können.

Nachricht wird vollständig im Schlüssel versteckt

Dafür nutzen die Forscher und Forscherinnen aus, dass die Wellenpakete in verschiedene Richtungen bezogen auf ihre Ausbreitungsrichtung schwingen können, zum Beispiel horizontal oder vertikal dazu. Definiert man nun die eine Schwingungsrichtung als 0 und die andere als 1, kann man mit Hilfe der Photonen Schlüssel aus Nullen und Einsen übertragen. Mit solch einem Schlüssel überlagert dann der Sender die eigentliche Nachricht – ist der Schlüssel genauso lang wie diese, ist damit die Nachricht vollständig im Schlüssel versteckt und niemals zu entziffern. Nur der Empfänger kann die Nachricht mit dem zuvor empfangenen Schlüssel decodieren.

In der Umsetzung ist die Methode sehr komplex

Zwei Dinge sind bei diesem Verfahren besonders: Einerseits sind aus quantenmechanischen Gründen die Schlüssel rein zufällig, was die Codierung der Nachricht zu 100 Prozent sicher macht. Vor allem aber kann bei der Übertragung der Schlüssel ein Lauscher in der Leitung enttarnt werden, denn gemäß den Regeln der Quantenmechanik würde er bei der Messung der Photonen diese verändern. „Tatsächlich ist das Verfahren komplexer“, erklärt der Verbundkoordinator Dr. Tobias Heindel, Leiter der BMBF-geförderten Nachwuchsgruppe

„Quantenkommunikationssysteme“ an der TU Berlin. So werden nicht nur vertikal und horizontal, sondern auch um 45 Grad gedrehte Schwingungsrichtungen verwendet, die jeweils mit passenden Filtern eingestellt und gemessen werden können. Wie die Filter eingesetzt werden und wie sich Sender und Empfänger über einzelne Messergebnisse austauschen, um einen Lauscher zu entlarven, wird in komplizierten „Protokollen“ festgeschrieben.

Technische Hintertüren für Angreifende schließen

„Oft klafft zwischen diesen informationstheoretisch sicheren Protokollen und ihrer Umsetzung mit realen Messgeräten eine Lücke, da in den Protokollen gemachte Annahmen durch die Technik nicht vollständig erfüllt werden können“, sagt Heindel. „Das öffnet sogenannten Seitenkanalattacken die Tür, bei denen Angreifende genau diese Lücke ausnutzen.“

In tubLAN Q.0 sollen nun diese Gefahren beim Schlüsselaustausch über Glasfasern zwischen zwei Orten A und B durch die Einführung einer Zentralstation minimiert werden, an die sowohl A wie B Photonen schicken. Diese werden in der Zentrale gemeinsam gemessen und A und B erhalten über normale, klassische Leitungen die Messergebnisse. In Kombination mit den nur bei A und B bekannten Schwingungsrichtungen der gesandten Photonen können die beiden Parteien anschließend einen sicheren Schlüssel generieren. „Das tolle an diesem Verfahren ist, dass die Zentralstation noch nicht einmal besonders geschützt werden muss, denn ein Spion kann mit den dort gemessenen Werten ohne die bei A und B vorhandenen Informationen gar nichts anfangen“, betont Heindel.

Weltweit erstmalig eingesetzt

Zwischen dem TU-Hauptgebäude als Zentralstation und zwei Räumen im Eugene-Paul-Wigner-Gebäude als A und B soll nun weltweit erstmalig dieses auch „Measurement-Device-Independent Quantum Key Distribution“ (MDI-QKD) genannte Verfahren mit räumlich getrennten Quanten-Lichtquellen eingesetzt werden. Durch die zentrale Architektur eignet es sich hervorragend für ein städtisches Netzwerk mit vielen verschiedenen Teilnehmer und Teilnehmerinnen, die alle miteinander kommunizieren möchten.

„Großstädte mit solchen urbanen Quantennetzwerken könnten in Zukunft über Satelliten miteinander verbunden werden“, sagt Heindel. Für dieses Szenario sollen wertvolle Erfahrungen bei der optischen Übertragung durch die Luft vom Eugene-Paul-Wigner-Gebäude zum TU-Hochhaus gewonnen werden.

Schnelles Verfahren mit neuen Lichtquellen

Auch bei den Lichtquellen für die Aussendung der Photonen wird tubLAN Q.0 Neuland betreten. Alle bisher realisierten Quantennetzwerke, wie etwa in Wien, Cambridge (England) oder Hefei (China) benutzen dazu Laser. Diese senden aber nicht in allen Fällen die benötigten einzelnen Photonen aus, sondern häufig auch Gruppen von zwei oder mehr. Diese können dann jedoch nicht für die Herstellung des Quantenschlüssels verwendet werden und verringern somit die Übertragungsrate.

„Da ja die verwendeten Schlüssel genauso lang sein müssen wie die Nachricht selbst, verlangsamt sich das Verfahren dadurch merklich“, sagt Heindel. „Wir werden deshalb zum ersten Mal in einer realistischen Netzwerkumgebung reine Einzelphotonenquellen verwenden, die tatsächlich nur jeweils ein einziges Lichtteilchen aussenden.“

Für das Glasfaser-Netzwerk mit dem MDI-QKD-Verfahren werden diese Einzelphotonenquellen von der Arbeitsgruppe von Prof. Dr. Stephan Reitzenstein an der TU Berlin entwickelt. Bei der Freiluft-Übertragung kommen Quellen zum Einsatz, die gemeinsam von Forschungsgruppen an der Universität Oldenburg, der Hochschule Emden-Leer sowie der Universität Jena gebaut werden. Die Simulation und theoretische Modellierung der experimentellen Resultate erfolgt in Zusammenarbeit mit der durch das Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) geförderten Nachwuchsgruppe von Dr. Anna Pappa an der TU Berlin.

Firmen zu diesem Artikel
Verwandte Artikel