Effizienterer Umgang mit Ressourcen 4 Millionen Euro für nachhaltige Materialinnovationen

Waferbonden ist ein Verfahrensschritt in der Halbleiter- und Mikrosystemtechnik, bei dem zwei oder mehr Scheiben miteinander verbunden werden.

Bild: Prof. Dr. Roy Knechtel, Hochschule Schmalkalden
23.11.2023

Wie können Holzabfälle für die Batterieherstellung genutzt werden? Können Leder- und Wollabfälle den CO2-Fußabdruck der Bauindustrie senken? Wie beschleunigt der digitale Zwilling von Mikrostrukturen eine ressourcenschonende Materialentwicklung? Und welche Chancen bietet die Bündelung von Verarbeitungsschritten in der Chipherstellung? Mit diesen Fragen beschäftigen sich vier interdisziplinäre Teams an den Hochschulen Aalen, Kaiserslautern, Karlsruhe und Schmalkalden. Je eine Millionen Euro erhalten die Teams im Rahmen des Programms „CZS Transfer“ von der Carl-Zeiss-Stiftung.

Laut einem Bericht des Weltressourcenrats der Vereinten Nationen „Assessing Global Resource Use“ hat sich der Rohstoffverbrauch von 1970 bis 2017 verdreifacht, auf rund 90 Milliarden t. Der globale Materialverbrauch pro Kopf stieg auf circa 11,8 t (1970: 7,2 t).

Die Industrienationen verzeichnen dabei einen besonders hohen Pro-Kopf-Verbrauch. Ein effizienterer Umgang mit Ressourcen und eine Entkopplung des Ressourcenverbrauches vom ökonomischen Wachstum erscheint damit eine zunehmend wichtige Forschungsaufgabe.

„Die Materialforschung ist hier ein Schlüsselelement zu mehr Ressourceneffizienz“, sagt Dr. Felix Streiter, Geschäftsführer der Carl-Zeiss-Stiftung. „Neben der Entwicklung neuartiger Werkstoffe zählen dazu auch innovative Methoden zur Ressourceneinsparung oder zur Wiederaufbereitung von Materialien oder Materialbestandteilen.“

In der Ausschreibung „Nachhaltige Materialinnovationen“ hat die Stiftung interdisziplinäre Forschungsprojekte an Hochschulen für angewandte Wissenschaften gesucht, die sich diesen Themen widmen. Vier Projekte wurden in einem zweistufigen Verfahren von einer Expertenkommission ausgewählt.

Durch Materialrecycling CO2-Emissionen senken

Die Bauindustrie ist für etwa 40 Prozent der weltweiten CO2-Emissionen verantwortlich. An der Hochschule Kaiserslautern verfolgt eine interdisziplinäre Projektegruppe um Prof. Dr. Gregor Grun das Ziel, neuartige Bindemittel und Faserverstärkungen aus Leder-, Naturfaser- und Wollabfällen zu entwickeln und in ungebranntem Lehm, Beton und Böden einzusetzen.

Dazu werden zunächst Bio-Polymere aus den Abfällen gewonnen und modifiziert, um sie in Baustoffen einzusetzen. Danach wird geprüft, inwieweit sie für den Einsatz in Lehmziegeln, Betonbauteilen und zur Verfestigung von Böden geeignet und wie beständig und fest sie im Vergleich zu herkömmlichen Baustoffen sind.

Kohlenstoff-Elektroden aus bestimmten Holzabfällen gewinnen

Bei der Transformation von Mobilität und Energieversorgung spielen Batterien eine Schlüsselrolle. Natrium-Ionen-Batterien sind eine nachhaltige Alternative zu Lithium-Ionen-Batterien. Die darin enthaltenen Kohlenstoff-Elektroden können aus pflanzlichen Stoffen, wie zum Beispiel Holzabfällen, gewonnen werden.

Die stark schwankende Zusammensetzung des Abfalls führt jedoch zu erheblichen Eigenschaftsschwankungen. Das Vorhaben von Prof. Dr. Volker Knoblauch an der Hochschule Aalen will dieses Problem lösen.

Mit einem patentierten Aufschlussverfahren werden nur bestimmte Holzbestandteile gewonnen und anschließend durch thermo-chemische Prozesse zu harten Kohlenstoffen mit gleichbleibend hoher Qualität umgewandelt.

Mit geringerem Materialeinsatz bestimmte Materialien entwickeln

Ziel des Projekts von Prof. Dr. Katrin Schulz an der Hochschule Karlsruhe ist, mit geringerem Materialeinsatz zum Beispiel besonders feste Materialen zu entwickeln. Mithilfe eines physikalisch basierten Modellierungsansatzes und eines digitalen Material-Zwillings sollen die Eigenschaften bestimmter Materialien im (Sub-)Mikrometerbereich genutzt werden – sogenannte Größeneffekte.

Der digitale Zwilling bildet das physikalische System mit dessen Eigenschaften virtuell ab. Dadurch sollen die Materialeigenschaften unter verschiedenen Rahmenbedingungen und Herstellungsprozessen vorhergesagt und maßgeschneiderte Materialien für neue Beschichtungen, Mikro- und Nanosysteme schneller und ressourcenschonender entwickelt werden.

Wafer-Level-Packaging in die industrielle Fertigung bringen

Wafer-Level-Packaging (WLP) ist eine Technologie der Chipherstellung. Aufbauschritte von Halbleiterchips zu einsatzfähigen Bauelementen, wie Verkapselung und Kontaktierung, erfolgen dabei gleichzeitig und direkt auf Waferebene. Im Gegensatz zur konventionellen Fertigung, werden die Halbleiterscheiben bereits vor der Verarbeitung zu separaten Chips deutlich weiter prozessiert.

Die Technologie verringert dadurch die Bauteilgröße, beschleunigt und bündelt die Herstellung in einer Fabrik und reduziert den Material- und Energieeinsatz. Prof. Roy Knechtel und Dr. Martin Seyring kombinieren an der Hochschule Schmalkalden verschiedene potenzielle Verfahren und Materialsysteme. Ziel ist, den Prozess in die industrielle Fertigung zu bringen.

Firmen zu diesem Artikel
Verwandte Artikel