Mit Sensoren Daten sammeln – das setzt der Industriedienstleister Infraserv Höchst bereits erfolgreich seit einigen Jahren um. Etwa 400 drahtlose Sensoren erfassen im Industriepark Höchst, einem der größten Chemie- und Pharmastandorte Deutschlands, die Parameter, die für einen zuverlässigen Betrieb sorgen – vornehmlich Temperatur- und Vibrationssensoren. Wichtig ist allerdings: Was passiert mit den gewonnenen Daten? Denn sie zeigen erst einmal nur die faktischen Anlagenzustände. Ob eine Veränderung etwa durch einen (drohenden) Schaden oder durch einen absichtlichen Eingriff wie ein geplantes Hoch- oder Herunterfahren der Leistung eingetreten ist, ist an den Daten so nicht ablesbar. Dazu fehlen Informationen, die vom Prozessleitsystem in den jeweiligen Anlagen dokumentiert werden – zum Beispiel die Drehzahl der Maschine, der Druck oder die Wasserdurchlaufmenge.
Verknüpfung verschiedener Datenquellen
Für eine tiefgreifendere Analyse müssen die Daten so aufbereitet und miteinander verbunden werden, dass daraus Rückschlüsse gezogen werden können – um beispielsweise Fehlerquellen zu finden, Energie einzusparen oder Kosten für Wartungen und Reparaturen zu senken, indem Schäden frühzeitig erkannt werden. Hier kommt die neue App IoT-PLS-Miner ins Spiel, mit der Infraserv Höchst zum ersten Mal die Sensordaten aus dem Internet of Things mit den Daten des Prozessleitsystems verknüpft. Mit wenigen Mausklicks lässt sich auf diese Weise der Gesamtzustand einer Maschine oder auch der Zustand einzelner Komponenten und Anlagenteile gezielt analysieren. Damit setzt der Industriedienstleister Predictive Maintenance konsequent um.
Entwickelt wurde das Tool bei Infraserv Höchst von den Experten der Abteilung Data Science & Data Engineering von IT-Services in Zusammenarbeit mit den Fachleuten der Abteilung Kälte, Kühlung, Wasser (KKW), die für Kälteversorgung, Wasseraufbereitung und Wassergewinnung im 460 Hektar großen Industriepark zuständig sind. „Das Verbinden der Sensordaten mit denen des Prozessleitsystems ist nicht einfach. Bisher hat das bei uns niemand gemacht“, erklärt Frank Mollard, der die Abteilung Data Science & Data Engineering leitet. „Das neue Tool bringt die Daten nun in logische Zusammenhänge und bietet ausgeklügelte Visualisierungen – bei einem Alarm verbindet die App die verschiedenen Daten in Echtzeit und die Kolleginnen und Kollegen können so direkt erkennen, ob etwas nicht in Ordnung ist und wann sie eingreifen müssen“, erläutert Mollard. „Mithilfe Künstlicher Intelligenz können wir hier auch nach Mustern suchen und so zum Beispiel günstige Fahrweisen von Pumpen erkennen.“
Die App als optimales Planungstool
Auf diese Weise können die Anlagen viel verschleißärmer und mit weniger Wartungsaufwand betrieben werden. Die Mitarbeiterinnen und Mitarbeiter im Betrieb erkennen Schäden frühzeitig, die Wartung wird planbarer, außerdem werden Reparaturkosten durch Schadensprävention gesenkt. Der Bereich Kälte, Kühlung, Wasser setzt den IoT-PLS-Miner als Planungstool ein: Ein Mal pro Woche analysieren die Mitarbeitenden in der Wassergewinnung und in der Kälteversorgung mit dem Tool, ob eine Maschine kontrolliert werden muss. „Die Bewertung und Einordnung der Sensorwerte hat in der Vergangenheit viel Raum eingenommen, weil wir die Daten verschiedener Quellen händisch verknüpfen und oftmals mehrere Personen einbeziehen mussten“, sagt Sarah Teizel, Betriebsleiterin der Kälteversorgung. „In der neuen App ist diese Verknüpfung bereits hergestellt. Das erhöht sowohl die Effizienz als auch die Erfahrungsgewinne durch eine detailliertere Analyse.“
Aus diesen Erfahrungsgewinnen resultieren etwa zehn Wartungseinsätze im Monat, bei denen die Lager zur Verhinderung von Maschinenschäden mit Öl nachgeschmiert werden. Außerdem konnten die Mitarbeiterinnen und Mitarbeiter bereits mehrmals frühzeitig eingreifen und größere Schadensfälle abwenden. „Bei einem Schadensereignis konnten wir zum Beispiel erhebliche Kosten einsparen: Hätten wir nicht rechtzeitig und gezielt eingegriffen, wäre mit Sicherheit ein Schaden von 12.500 bis 25.000 Euro entstanden. Mithilfe der frühzeitig verfügbaren Daten konnten wir die Anlage für rund 3.500 Euro gezielt reparieren“, berichtet Frank Mollard. Vergleichbare Fälle treten pro Anlage etwa vier- bis sechsmal im Jahr auf. Der Data-Science-Experte resümiert: „Der IoT-PLS-Miner verlängert Wartungszyklen und die Lebensdauer von Anlagen und ist so konstruiert, dass er problemlos auch auf andere Betriebe von Infraserv ausgerollt werden kann.“