All the latest news from the industry weekly compiled by the editorial team for you free of charge.
This eMail is already registered.
An unexpected error occured.
Please accept our Terms of Use.
Registration successful.
1 Rating

ELECTRIC VEHICLE MANUFACTURING EV manufacturing: Moving into the fast lane

May 17, 2021

Greg Roth, Director of Automotive & Transportation Solutions, Siemens Digital Industries Software; Shashi Rajagopalan, Director Manufacturing Business Group - Americas, Siemens Digital Industries Software - While the global automotive manufacturers and start-ups are racing to become electric, there are various challenges in their way to accomplish this agenda. A full-coverage high-power charging infrastructure is essential for driving forward electromobility. As a pioneer and innovator in electric mobility, Siemens has global experience, a strong portfolio along the value chain and is an active participant in shaping and promoting standardisation for EV charging solutions worldwide. In this Cover Story, Siemens, details the factors driving growth, the challenges of manufacturing EV and technologies & tools helping in this drive.

Major automotive OEMs and new start-ups are well entrenched in the pursuit of Autonomous, Connected, Electrified and Shared mobility (ACES). Dozens of companies have established programs for designing and testing autonomous and connected vehicles, either for personal use or as part of a shared mobility system. Progress is being made, but large-scale, real-world applications of these technologies are still years in the making. Electrified mobility, on the other hand, has the potential to create significant short-term disruption in the automotive industry and is already on the way to mainstream adoption.

The recent and rapid growth of Electric Vehicles (EVs) is driven by several factors (figure 1):

  • Key EV technologies, such as batteries, are improving faster than expected

  • Greater regulatory pressure at national, regional and city levels is driving early adoption of what is perceived to be a new norm

  • Intense investment into EV programs and start-up companies from a variety of sources, both traditional automotive companies and new entrants to the market

  • A growing network of EV charging stations is making it easier and more convenient to use an EV every day

The effect of these driving forces is evident in the growing adoption of EVs by mainstream consumers. EV sales have seen steady growth over the last five years. EVs are projected to match the sales of Internal Combustion Engine (ICE) vehicles by 2030 and to surpass them by 2040. To meet this increased demand and remain competitive in a changing market, automotive manufacturers will need to ramp up their ability to manufacture EVs at volume.

Challenges of EV manufacturing

EVs present new challenges that major automotive brands and start-up companies are yet to face. These challenges fall into four areas: lightweighting, the transition to EV platforms, battery production and supplier evolution.

To counteract the increased weight of electric powertrains, vehicle manufacturers are incorporating advanced lightweight materials into the vehicle body. Replacing conventional materials with lightweight magnesium and aluminium alloys or carbon fibre can reduce the weight of a vehicle body and chassis by up to 50%. Vehicle manufacturers must incorporate these materials intelligently and ensure that weight reductions do not compromise vehicle safety.

Drive range is also impacted by the size and chemistry of the vehicle batteries. Many EVs currently in the market are adapted from pre-existing ICE vehicles. Due to differences in the packaging of ICE and electric powertrains, these non-native EVs compromise battery size to fit into the existing architecture (figure 2). Manufacturers are shifting to modular native EV platforms, both to better accommodate electric powertrains and to support high-volume production. Native EV platforms can accommodate battery packs that are up to 25% larger, providing greater drive range and support flexible powertrain configurations (Chatelain, Erriquez, Mouliére, & Schäfer, 2018). Advances in battery chemistry will continue to improve the energy density of these batteries, further improving the range.

The cost to manufacture and purchase EVs will decline as production increases but reaching price parity with ICE vehicles will require additional advancements in battery production methods. Batteries are the main contributor to the cost of EVs. The production of battery cells is the primary challenge, accounting for 70% of the total cost of the battery pack. Improving cell chemistry that increases energy density will help, but battery manufacturers will need additional means of reducing cell production and battery pack assembly costs to deliver cost-effective vehicle batteries.

Finally, the automotive OEM and supplier relationships will become more important and more complex. For automotive OEMs, this transition will present new challenges in managing their supply chains, including lead-time, quality assurance, and traceability of the product lifecycle across organisations. Suppliers will see a great opportunity for growth and evolution into providers of more complete vehicle sub-systems. With growth, however, comes additional risk. OEMs will set aggressive time-to-market goals for increasingly complex systems. In addition, suppliers will need to ensure robust collaboration and traceability procedures are in place as they work with OEMs and other suppliers.

Major automotive manufacturers have already embarked on the transition to EV manufacturing, triggering the largest automotive transformation in decades. Automakers will need to adapt or replace the processes, technologies and tools used throughout the enterprise to overcome the challenges of EV manufacturing.

The digital twin moves EV manufacturing into the fast lane

Creating a digital twin of the product and the production can solve the challenges of EV manufacturing by blurring the boundaries between design and manufacturing, merging the physical and digital worlds. Digital twins of the production process and production system are key to driving operational efficiency improvements through the factory of the future concepts. These digital twins capture physical asset performance data from products and factories in operation. The data from smart connected products in the field and factory equipment is aggregated, analysed and integrated into the product design as actionable information, creating a completely closed-loop decision environment for continuous optimisation.

This comprehensive digital twin comprises many digital threads that weave together cross-domain engineering between mechanical, electrical and software domains along the product and production lifecycle. Data analytics, cloud and IoT enable closed-loop performance engineering that spurs continuous improvement of design, manufacturing and performance. Such a comprehensive digital twin enables manufacturers to plan and implement manufacturing processes for new lightweight designs and modular vehicle platforms while reducing the costs of battery production and coordinating across deep supplier ecosystems. This approach will not be optional but will be required for automotive companies as they transition into the dynamic and fast-paced future of their industry. Let’s examine how the digital twin helps solve each challenge:

Lightweight designs

The integration of new materials into vehicle architectures is key to many manufacturers’ strategies for reducing the weight of vehicles while maintaining vehicle safety. These new materials, however, introduce new manufacturing constraints. For example, the increasing use of aluminium and carbon fibre to create vehicle bodies has caused the adoption of new joining technologies.

A digital twin of the production process enables engineers to evaluate multiple methods of joining vehicle components, including joining technology and tool orientation, to identify the most accurate and efficient process. For instance, laser welding requires high accuracy, especially when dealing with complex component geometry. Using a digital simulation of the product components and robotic welding, a programmer can quickly define a welding seam on the product geometry that accounts for robot collision constraints and configuration to produce a single welding seam.

New materials are not the only change agent related to lightweight vehicle design and manufacturing. Advanced technologies, like Additive Manufacturing (AM), can also contribute to the reduction of vehicle weight by enabling the production of more sophisticated component geometries. AM allows engineers to reimagine the product design to expand their capabilities, improve performance and reduce material usage and weight. The intelligent use of AM can produce astounding results. AM has become a major piece of Ford’s manufacturing ecosystem. One of their AM applications, according to Ford, has the potential to save the company more than $2 million (Goehrke, 2018).

EV platforms

As manufacturers shift towards native EV platforms, their assembly processes will need to shift towards a more modular build environment. In addition, strategic alliances between global automakers will be important methods of gaining access to foreign markets, diluting the cost of platform development and accelerating supply chain optimisation through scale.

Assembly methodologies, processes and tooling will evolve to support these modular build scenarios that can quickly adapt to market conditions. As a result, manufacturing planning must be digitalised to become more agile and integrated. Leveraging a digital twin of the product, engineers can evaluate manufacturing methods virtually, analysing multiple tools, assembly sequences and production line configurations while identifying and resolving issues (figure 3).

For example, vehicles contain hundreds of parts that need to be assembled. The planning team can define assembly processes that identify the tools and equipment needed to assemble each product and the sequence in which this assembly should occur digitally. Advanced process planning solutions help planners allocate vehicle parts to new assembly processes and can identify parts that have yet to be processed. Each of these processes can then be allocated within the manufacturing facility to define and validate the assembly sequence.

Battery production

Reducing the cost of battery production is a critical step to the success of EVs. Integrated digital solutions can help battery producers achieve cost-effective batteries by connecting battery design with manufacturing and establishing a digital thread throughout the flow.

Advanced battery design and simulation solutions enable engineers to optimise cell design and performance at the early stages of development. Cell geometry can be defined and optimised in the context of the battery modules and final package. Then, battery cells, modules and packs can be evaluated in a virtual production process, enabling engineers to design flexible, efficient processes across all fields of cell, module and pack assembly. This caters to the market demands for improvements in efficiency and cost along the entire value chain in battery manufacturing.

Supplier evolution

Leveraging a comprehensive digital twin will enable OEMs and suppliers to collaborate effectively and efficiently under tight delivery timelines. Such a digital twin facilitates model-based definition and engineering that can help improve designs for manufacturing processes. Assembly variation analysis and automated feature-based CMM programming ensure first-pass manufacturing quality and can identify root causes of product defects. The digital twin can also be used to plan quality inspections and tie these to change management processes. With these capabilities, OEMs and suppliers can achieve faster quality ramp-up with root-cause analysis that feedback into product design change processes.

Suppliers will also need to remain flexible to short lead times and accelerated evolution of assembly methods to meet variable demands. Digital twins of the production facilities will allow these companies to make the best use of existing capabilities while quickly identifying and designing new production lines or assembly processes (figure 4). If additional production lines or new assembly processes are necessary, manufacturing engineers can design these additions in the context of the current factory, verifying floor space and layout.

Digitalisation leading to acceleration towards EV

EV manufacturing presents new and novel challenges to automotive OEMs and start-ups seeking to become major electric mobility players. These companies will need to adopt advanced manufacturing technologies, such as AM, and develop modular production facilities to produce the lightweight and flexible platforms needed for next-generation EVs. Cost reduction and coordination across the manufacturer and supplier ecosystem will also be critical to fostering the growth of EVs in the market.

Integrated and digitalised manufacturing planning and simulation solutions can help these companies adapt and overcome these challenges by uniting manufacturing with design and the real-world with its digital counterpart. Such solutions will enable vehicle manufacturers to accelerate their production planning and ramp-up by virtually designing and validating production processes for cycle time, product quality and operator ergonomics.

Image Gallery

  • Figure 1: Four key factors driving EV growth

  • Figure 2: Native EV platforms provide more configuration flexibility and greater drive range by accommodating larger battery packs

  • Figure 3: Engineers can use the digital twins of these sub-assemblies to plan and evaluate manufacturing processes

  • Figure 4: Production digital twins help manufacturers and suppliers develop new production capabilities quickly to maximise each facility and line

  • Greg Roth

    Director of Automotive & Transportation Solutions

    Siemens Digital Industries Software

  • Shashi Rajagopalan

    Director Manufacturing Business Group - Americas

    Siemens Digital Industries Software

Companies related to this article
Related articles