Durchbruch in der Arzneimittelforschung Heiliger Gral der Peptidchemie entdeckt

Feimpft oder geschluckt? Bei Peptidmedikamenten könnte bald beides möglich sein.

27.02.2018

Die orale Verfügbarkeit peptidbasierter Medikamente galt bisher als heiliger Gral der Peptidchemie. Forscher aus München liefern nun eine Strategie, um Peptidmedikamente künftig auch in Form von Saft oder Tabletten herzustellen.

Peptide, kurze Ketten aus Aminosäuren, die im menschlichen Körper viele Funktionen steuern, stehen auch in der Pharmazie für einen Milliardenmarkt. Bekannte Beispiele sind das Insulin, das aus 51 Aminosäurebausteinen besteht und den Zuckerstoffwechsel steuert oder Cyclosporin, ein Peptid aus elf Aminosäuren, das sich zur Unterdrückung der Abstoßungsreaktion bei Organtransplantationen bewährt hat.

Weltweit befinden sich daher derzeit rund 500 Peptid-basierte Medikamente in klinischen Tests. Einige wenige Peptidmedikamente erzielen bereits Milliardenumsätze. Üblicherweise müssen diese Medikamente jedoch gespritzt werden. Dass sie nicht in Tablettenform eingenommen werden können, ist ein entscheidender Nachteil fast aller Substanzen dieser Klasse.

Ein von der Technischen Universität München angeführtes Forschungsteam hat nun herausgefunden, wie man Peptide so gestalten kann, dass sie als Saft oder Tablette eingenommen werden können. „Peptide eignen sich wunderbar als Medikamente“, sagt Horst Kessler, Carl von Linde Professor am Institute for Advanced Study der TU München. „Der Körper nutzt sie ja bereits als Signalmoleküle, und wenn sie ihre Aufgabe erfüllt haben, können sie vom Körper recycelt werden – keine Anreicherung, keine aufwändige Entgiftung.“

Hürdenlauf durch den Magen

Da Eiweiße ein wichtiger Bestandteil der Nahrung sind, gibt es in Magen und Darm unzählige Enzyme, die Peptidbindungen spalten. Ungeschützt würde kein Peptid-Medikament den Durchgang durch den Magen-Darm-Trakt überstehen. „Hier haben wir in den letzten Jahren einige wirksame Strategien entwickelt: Schwerer angreifbar sind beispielsweise ringförmige Peptide. Die Amidgruppen können mit Methylgruppen geschützt werden, und auch der Einbau von spiegelverkehrt aufgebauten D-Aminosäuren erschwert den Angriff der Verdauungsenzyme“, erläutert Kessler.

Doch kommen solchermaßen modifizierte Peptid-Verbindungen heil durch den Magen, steht ihnen eine weitere Hürde im Weg: Die Zellen der Darmwand verwehren ihnen die Aufnahme ins Blut. Spritzen ist daher in der Regel der einzige Weg, solche Wirkstoffe in den Körper zu bringen.

Diese Herausforderung ging das Team zunächst mit einem ringförmigen Modellpeptid an. Es bestand aus sechs Molekülen der einfachsten Aminosäure, dem Alanin. Damit untersuchten die Wissenschaftlerinnen und Wissenschaftler, wie sich der Ersatz von Wasserstoffatomen der Peptidbindungen durch Methylgruppen auf die orale Verfügbarkeit auswirkt.

Über 50 Variationen kamen so zustande. Zellversuche der Kooperationspartner in Israel zeigten, dass nur ganz bestimmte Peptid-Varianten sehr schnell aufgenommen werden. „Es sieht so aus, als könnten zyklische Hexapeptide mit einer bestimmten Struktur ein vorhandenes Transportsystem nutzen“, sagt Prof. Kessler.

Die biologische Wirkung

Als Ziel für ihre Peptide wählte des Team Integrin-Rezeptoren, die an der Zelloberfläche vielfältige Funktionen steuern. Eine Sequenz aus den drei Aminosäuren Arginin, Glycin und Asparaginsäure ist der Schlüssel für die Erkennung an diesen Rezeptoren. Kesslers Mitarbeiter bauten die Schlüsselsequenz an verschiedenen Positionen ihres Modellpeptids ein und schufen so neue Varianten.

Doch sowohl die negativ geladene Seitenkette der Asparaginsäure als auch das positiv geladene Arginin stellten sich als KO-Kriterium für die Nutzung des Transportsystems heraus. Dem Team gelang es jedoch, die geladenen Gruppen beider Aminosäuren mit Schutzgruppen zu maskieren.

Zwar verliert das Peptid damit zunächst die Fähigkeit zur Bindung an das Zielmolekül, doch wählt man die richtigen Schutzgruppen, so werden diese durch im Blut allgegenwärtige Enzyme wieder abspalten. Am Ziel angekommen ist die pharmazeutische Wirkung wiederhergestellt.

Beweis der oralen Verfügbarkeit

Zelltests bestätigten, dass das neue Hexapeptid eine biologische Wirkung aufweist: In niedriger Dosierung regt es das Wachstum von Blutgefäßen an. Füttert man Mäuse mit dem maskierten Hexapeptid, so stellt sich die gleiche Wirkung ein, wie bei Mäusen, denen das unmaskierte Hexapeptid gespritzt wurde.

„Experten haben in der Vergangenheit die orale Verfügbarkeit peptidbasierter Medikamente als den heiligen Gral der Peptidchemie bezeichnet. Mit unserer Arbeit liefern wir eine Strategie, wie die Herausforderungen der Stabilität, der Aufnahme in den Körper und der biologischen Wirksamkeit gelöst werden können“, sagt Kessler. „In Zukunft wird es damit sehr viel leichter, Peptidmedikamente herzustellen, die einfach als Saft oder Tablette gegeben werden können.“

Die Bedeutung der Integrine

Die Kommunikation zwischen den Zellen eines Körpers in den verschiedenen Organen ist eine essenzielle Voraussetzung für die Existenz mehrzelliger Organismen. Eine wichtige Rolle spielen dabei Rezeptoren an der Zelloberfläche, die sogenannten Integrine. Sie leiten Informationen über die Umgebung der Zelle ins Zellinnere.

Tumore senden beispielsweise Wachstumssignale an Blutgefäßzellen, damit diese weiter wachsen und die Blutversorgung des Tumors sicherstellen. Fehlfunktionen von Integrinen sind darüber hinaus Ursachen sehr vieler Erkrankungen und daher für die Pharmaforschung von hohem Interesse.

Die Rolle der Erkennungssequenz

Von den 24 verschiedenen Integrinen des Menschen erkennen acht Subtypen eine kleine Sequenz aus nur drei Aminosäuren, nämlich Arginin, Glycin und Asparaginsäure (Kurzschreibweise: Arg-Gly-Asp, Einbuchstaben-Code: RGD). Wie ein Schlüssel passt diese Struktur in den Rezeptor des Integrins. Signalmoleküle und Proteine mit dieser Sequenz lösen damit eine Reaktion der Zelle aus. Zusammen mit weiteren der Erkennung dienende Aminosäuren entscheidet die räumliche Struktur der Sequenz, zu welchem der Integrine der Schlüssel passt.

Die Arzneimittelforschung sucht nun Moleküle, die diese Erkennungssequenzen in der richtigen räumlichen Struktur besitzen und die gleichen Zellreaktionen auslösen können. Die Möglichkeit, verschiedene Integrin-Subtypen gezielt adressieren zu können, ist ein wichtiger Schritt in Richtung einer personalisierten Medizin, in der jede Krebsart patientenspezifisch bekämpft werden kann.

Bildergalerie

  • Die Entdecker des heiligen Grals (v.l.n.r.): Dr. rer. nat. Florian Reichart;  Dr. rer. nat. Andreas Raeder; Michaeel  Weinmueller; Prof. Dr. Dr. h.c.Horst Kessler.

    Die Entdecker des heiligen Grals (v.l.n.r.): Dr. rer. nat. Florian Reichart; Dr. rer. nat. Andreas Raeder; Michaeel Weinmueller; Prof. Dr. Dr. h.c.Horst Kessler.

    Bild: Uli Benz/TU München

  • Zyklisches Hexapeptid, bestehend aus: Arginin (oben), Glycin, Asparaginsäure, Alanin, N-methyliertes Alanin, N-methyliertes D-Valin (im Uhrzeigersinn)

    Zyklisches Hexapeptid, bestehend aus: Arginin (oben), Glycin, Asparaginsäure, Alanin, N-methyliertes Alanin, N-methyliertes D-Valin (im Uhrzeigersinn)

    Bild: Michael Weinmueller/TU München

Firmen zu diesem Artikel
Verwandte Artikel