Brillantere Farben bei gleicher Energieeffizienz Die nächste Generation an Farbdisplays

Durch die Kopplung von Licht und Materie ist eine hohe Farbbrillanz in OLED-Displays möglich.

Bild: iStock; ilbusca
22.03.2023

Ein Team von Forschern und Forscherinnen der Universität zu Köln und der University of St Andrews (Schottland) zeigt in einer neuen Studie, wie ein fundamentales Konzept der Physik genutzt werden kann, um bei Displays von Smartphones, Computern oder TV-Geräten noch brillantere Farben zu erzeugen, ohne dass sie an Energieeffizienz einbüßen.

Organischen Leuchtdioden (OLEDs) haben längst den Markt für Bildschirme erobert – vom hochauflösenden Smartphone-Bildschirm bis hin zum wandfüllenden Fernseher. Bei der nächsten Generation von Geräten mit noch höherer Farbsättigung, Helligkeit und Effizienz, stehen Industrie und Wissenschaft jedoch vor mehreren Herausforderungen.

Die organischen Moleküle, aus denen OLEDs hergestellt werden, weisen intrinsisch breite Emissionsspektren auf – eine Eigenschaft, die den verfügbaren Farbraum und die Farbsättigung für High-End-Displays einschränkt. Durch Farbfilter oder optische Resonatoren können die Emissionsspektren von OLEDs künstlich verschmälert werden, um diese Problematik zu umgehen. Dies geht jedoch entweder auf Kosten der Effizienz oder führt zu einer starken Abhängigkeit der wahrgenommenen Farbe vom Betrachtungswinkel.

Kopplung von Licht und Materie

Forschende der beiden Universitäten haben nun gezeigt, dass ein grundlegendes wissenschaftliches Prinzip – die starke Kopplung von Licht und Materie – genutzt werden kann, um die Emissionsspektren von OLEDs zu verändern, und zwar ohne dass sich die Farbe der OLEDs mit dem Betrachtungswinkel verändert. Werden Photonen (Licht) und Exzitonen (Materie) mit ausreichend großer Wechselwirkung zusammengebracht, koppeln diese so stark, dass sogenannte Exziton-Polaritonen entstehen. Das Prinzip lässt sich etwa mit zwei gekoppelten Pendeln, zwischen denen Energie übertragen wird – nur dass hier Licht und Materie miteinander koppeln und kontinuierlich Energie austauschen. Diese Polaritonen geben schließlich wieder Licht ab.

Indem der gesamte Schichtstapel der OLED zwischen dünnen Spiegeln aus metallischen Materialien eingebettet wird, die in der Displayindustrie bereits weit verbreitet sind, kann die Kopplung zwischen Licht und organischem Material deutlich verbessert werden. Bislang führte starke Kopplung in OLEDs jedoch unvermeidlich zu einer geringen elektrischen Effizienz. Um dies zu vermeiden, fügten die Forschenden einen separaten dünnen Film aus stark lichtabsorbierenden Molekülen hinzu, wie sie bereits in organischen Solarzellen nicht aber in OLEDs zum Einsatz kommen. Die zusätzliche Schicht maximierte den Effekt der starken Kopplung, ohne jedoch die Effizienz der licht-emittierenden Moleküle in der OLED wesentlich zu verringern.

„Durch die Erzeugung von Polaritonen können wir einige der vorteilhaften Eigenschaften von Materie auf unsere OLEDs übertragen – unter anderem ihre deutlich geringere Winkelabhängigkeit, so dass der Farbeindruck eines Displays aus jeder Perspektive gleich gut bleibt“, sagt Dr. Andreas Mischok, der Erstautor der vorliegenden Studie.

Zwar gab es in der Vergangenheit bereits Berichte über OLEDs auf der Basis von Polaritonen, doch zeigten diese eine sehr geringe Effizienz und Helligkeit, was Anwendungen in der Praxis verhinderte und sie zu einer Kuriosität der Grundlagenforschung machte. Mit der neuen Strategie ist es dem Team nun erstmals gelungen, Polariton-basierte OLEDs mit anwendungsrelevanter Effizienz und Helligkeit zu realisieren.

Mehr Effizienz und Helligkeit

Der Leiter der Studie Professor Dr. Malte Gather ist überzeugt: „Mit einer Effizienz und Helligkeit, die mit OLEDs wie sie in kommerziellen Displays verwendet werden vergleichbar ist, aber mit deutlich verbesserter Farbsättigung und Farbstabilität, sind unsere Polariton-basierten OLEDs für die Displayindustrie von großem Interesse.“ Die bedarfsgerechte und effiziente Erzeugung einer großen Anzahl von Polaritonen ist nicht nur für die nächste Generation von Bildschirmen relevant, sondern kann auch für eine Vielzahl von Anwendungen genutzt werden, von Lasern bis hin zum Quantencomputing.

Firmen zu diesem Artikel
Verwandte Artikel